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Ecological model of extinctions

Guillermo Abramson
International Centre for Theoretical Physics, P.O. Box 586, 34100 Trieste, Italy

~Received 2 August 1996!

We present numerical results based on a simplified ecological system in evolution, showing features of
extinction similar to that claimed for the biosystem on Earth. In the model each species consists of a population
in interaction with the others, that reproduces and evolves in time. Each species is simultaneously a predator
and a prey in a food chain. Mutations that change the interactions are supposed to occur randomly at a low rate.
Extinctions of populations result naturally from the predator-prey dynamics. The model is not pinned in a
fitness variable, and natural selection arises from the dynamics.@S1063-651X~96!01612-1#

PACS number~s!: 87.10.1e, 05.40.1j, 05.45.1b
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I. INTRODUCTION

The evolution of living organisms is a fascinating ph
nomenon that has intrigued the imagination of the scien
and nonscientific community. However, the formulation
mathematical models falls necessarily to drastic simplifi
tions. For example, evolution has often been considered
‘‘walk’’ in a rugged landscape. Following this line, Bak an
Sneppen~BS! have proposed a model of biological evolutio
@1# that has become quite interesting to the physics com
nity due to its simplicity and the insight it provides to th
problem. It has been shown that this model evolves t
self-organized critical~SOC! state, and is kept there by th
means of avalanches of evolutionary activity. This is appe
ing for a model of biological evolution, since it has be
observed that life on Earth could be in a SOC state@2,3#.
Nevertheless, models based in fitness landscapes, or in a
cept of fitness different from the biological one, have be
criticized from a biological point of view@3,4#.

Since one of the characterizing aspects of life, and p
haps the most fundamental one, is that of self-replication
is our belief that more realistic models should involve a d
namic population for each species. The starting point
combining population dynamics with evolution is the ass
ciation of the rates of birth and death and the carrying cap
ity with phenotypes~observable features that arise from t
genotype and are, then, subject to mutation! @5#. The fitness,
namely, the expected number of offspring produced by
individual, arises from them. In this way, the process of na
ral selection is directed by the ecological interactions inst
of by a nonbiological notion of relative fitness.

Extinction is an essential component of evolution. T
great majority of species that have ever lived on Earth
now extinct @6#. There exist competing hypotheses that a
count extinction as originating from within the biosystem,
from external causes—what has been called ‘‘bad gene
bad luck.’’ In any case, the pattern of extinctions and
surviving species or groups of species is certainly an in
esting problem to model, to understand, and eventually
check with the fossil record.

We show in this contribution a simple model of a lar
ecological system in evolution. This produces features of
tinction similar to those claimed for the biosystem on Ear
We have chosen to study an ecological model in which e
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species consists of a population interacting with the oth
that reproduces and evolves in time. The system is suppo
to be a food chain, and the interactions to be between pre
tor and prey. Mutations that change the interactions are s
posed to occur randomly at a low rate. Extinctions of pop
lations result from the predator-prey dynamics. Th
approach can be thought of as midway between the mi
scopic simulation of ‘‘artificial life’’ by Ray and Adami@7#,
and the coarse-grain description of models like BS’s.

II. THE MODEL

Our model ecosystem consists of a number of species
interact and evolve in time. In the course of its time evo
tion the populations grow and shrink following a set of equ
tions. Eventually, some of the species become extinct a
result of their interaction with the others. Every now a
then we change one of the phenotypic features of one of
species, mimicking a random mutation of its genome. T
modification produces a perturbation in the dynamics of
ecosystem, and eventually leads to the extinctions.

To be more precise, let us consider a simple example
food web, namely, a one-dimensional food chain.N species
interact in such a way that the speciesi feeds on the specie
i21, and is eaten by the speciesi11. The species 1 is an
autotroph: it feeds at a constant rate on an ‘‘environmen
The speciesN, the top of the chain, is not eaten by an
species, but dies giving its mass to the environment. E
species has a population that evolves in time and inter
with its neighbors in the chain. Furthermore, we consider t
evolution in discrete time, which is often more realistic th
a continuous one@5# and simpler to simulate in a compute

As has been said above, each species acts as a pre
with respect to the one preceding it in the chain, and a
prey with respect to the one following it. As a further sim
plification, we suppose that there are no intrinsic birth a
death rates, apart from those arising from the predation
prey contributions. Let us propose the equations govern
this behavior@8#. As a predator, the ‘‘population’’~a con-
tinuous density! of the speciesi , ni , changes from timet to
time t11 according to

Dnt
i5kint

i21nt
i~12nt

i /ci !, ~1!
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whereki is a rate of growth of the predator population a
ci is a carrying capacity that accounts for a limitation im
posed by the environment. Note that~1! includes this carry-
ing capacity in a logistic factor to avoid an unbound
growth of the population. Also observe that the growth
proportional to the population of prey, without a ‘‘satiation
factor. Similarly, as a prey, the population of the speciei
will diminish according to

Dnt
i52gint

int
i11 . ~2!

The parameterski , gi , andci are the phenotypic features o
our species. In the course of the evolution we allow them
change, mimicking random mutations. Moreover, they
the same for all the individuals of each single population. W
do not model races, traits, polymorphisms, or any phenoty
variation within a species, and when a mutation occurs i
assumed that the whole population ‘‘moves’’ instantly to t
new state. In this sense, we are modeling the coevolutio
the species and disregarding the evolution of a single on
well as other important phenomena such as the formatio
new species@9#.

Combining the two roles of predator and prey that ea
species performs, and the special status of the ends o
chain, we can write the following set of equations for t
evolution of the system:

Dnt
i5kint

i21nt
i~12nt

i /ci !2gint
i11nt

i for i51, . . . ,N,
~3!

n05nN1151,

where we have introduced two fictitious species, 0 a
N11, to take account of the border condition.

We make two simplifications to the system~3!: ~1! we
assume that all the carrying capacities are equal, and equ
1; ~2! we assume thatgi5ki11. In this way we reduce the
number of parameters that define the phenotypic feature
the ecosystem.

The dynamics of the system is as follows. At timet50,
all the populations and interactions are chosen at rand
with uniform distribution in the interval (0,1). Then th
populations begin to evolve according to the system~3!. In
the course of the evolution driven by Eq.~3! a population
can go to zero. As this can happen asymptotically, we c
sider a species extinct if its population drops below a giv
threshold. This is reasonable since actual biological pop
tions are discrete. In order to keep constant the numbe
species we replace an extinct one with a new one, which
be thought of as a species coming to occupy the niche lef
the extinct one@10#. The new population, and the~two! new
interactions with its neighbors in the chain, are also drawn
random from a uniform distribution in the interval (0,1). O
top of this dynamics of predation and extinctions, we int
duce random mutations. In each time step a mutation is
duced with probabilityp; the species to mutate is chosen
random and the mutation itself consists of the replacemen
the species with a new one, with a new population and n
interactions with its predators and prey@all random in
(0,1)#.

Observe that we do not introduce the fitness of a spe
as a dynamical variable. We do not even need to compu
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from the ‘‘phenotypes’’ki . The fitness, the degree of ada
tation of a species to the ecosystem, arises from the ph
types, the populations, and the dynamics, and it determ
whether a species will thrive or become extinct. Chance
introduced by the random mutations~and the random re-
placement of extinct species!. It provides the material the
natural selection works on. This, in turn, determines the s
vival of the fittest by simply eliminating from the system
those species that cannot cope with the competing envi
ment. We believe in this way we avoid a fundamental pro
lem in the models of evolution as a walk in a fitness lan
scape, namely, that the concept of fitness is not the biolog
one @4#.

III. RESULTS OF THE NUMERICAL SIMULATION

We have run our model for several chain sizes, rang
from 50 to 1000 sites, and for times of about 107 steps. In the
results reported below we let the system evolve, durin
transient period, from the initial random state to an organiz
one.

In Fig. 1 we show a typical evolution of the whole pop
lation,( i51

Nni . Although each population greatly changes
the course of time~which is not shown in the picture!, we
observe that the whole population remains relatively sta
This is due to the saturation factor in the predation term
the evolution equations. This whole population shows a sh
time oscillatory dynamics governed by the competition b
tween species through the set of equations~3!, and a long
time evolution characterized by periods of relative stasis
periods of fast change. This feature is the effect of mutati
and extinction of some species. Without the extinctions a
mutations, the dynamics of the system should probably
chaotic. But it is not this feature that we want to analy
here. Instead, we shall focus on the pattern of extinction

As the set ofki represents the phenotypes of the who
ecosystem, its distribution,P(k), can be used to characteriz
its state. Let us observe what happens in the course of t
including the transient mentioned above. Initially theki are
chosen at random, and thus its distribution is flat in (0,

FIG. 1. Evolution of the whole population of a chain of 10
species. Probability of mutationPmut51025. Observe the superpo
sition of small oscillations and the much larger spikes signaling
mutations and extinctions.
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with mean 0.5. This is shown in Fig. 2 as a full line. As time
passes, and as a result of the dynamics, this distributio
shifts to a nonuniform one, as shown in Fig. 2 with dashe
lines. The whole distribution shifts towards lower values o
the interaction, showing a tendency of the system to redu
the coupling between the species. In the course of the ev
lution this distribution fluctuates following the pattern of mu-
tations and extinctions, but preserves its form.

Figure 3 shows the above mentioned fluctuations i
P(k) as the evolution of the mean value ofki in the system,
after the transient. It corresponds to the same run as Fig.
and the same time window is shown. Similarly to that, i
displays a pattern of periods of stasis interrupted by period
of fast change, but without the short time oscillations dis
played by the population. There are periods of stasis of a
lengths, to a degree that the unique scale of the figure cann
display. This feature of a lack of a typical length will be
analyzed immediately. Observe in this figure that the mea
value oscillates around 0.24, corresponding to a distributio
like that shown in Fig. 2 with a dotted line.

The extinction events also display this characteristic pa
tern of periods of stasis and periods of change, without

FIG. 2. DistributionP(k) of the interactions in a chain of 1000
species. Solid line: initial distribution; dashed line:t55000; dotted
line: t553106. Pmut51025.

FIG. 3. Evolution of the mean value of the interactions,^k&, of
a chain of 100 species.Pmut51025. The plot corresponds to the
same run as that of Fig. 1.
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typical size. In order to characterize this, we have chosen t
time between two consecutive extinction events,t, the dis-
tribution of which is shown in Fig. 4 for several system size
and probabilities of mutation. Observe that they follow a
power law for several decades of large values oft, before a
region where the effects of the finite size of the system sta
to appear. This is a sign that the system has self-organiz
into a critical state. In other words, the extinction events a
distributed in the time axis in such a way that the time be
tween extinctions does not have a characteristic duration—
it should have if the distribution were exponential. Extinc
tions appear to come in bursts, or avalanches, of any size

In Fig. 5 the pattern of extinction events of the system i
seen in the course of time. The graphic displays time in th
abscissa and the index in the food chain in the ordinate. Ea
dot marks the moment in which a species has become e
tinct, each cross, a species that suffers a chance mutation
can be seen that some mutations trigger avalanches of exti
tion, and that these propagate in the ‘‘prey’’ direction.~Bear
in mind that an extinct species is replaced by a random ne
one, most probably with a larger population than its pred
cessor, and observe that this has a negative impact in
correspondingprey.! It is also apparent that these avalanche
have a complex shape in space time. It is not easy to meas
their size since, as can be seen in Fig. 5, they overlap. S
for example, a mutation that isnot followed by any ava-
lanche ~lower left!, another that triggers a very small one
~lower right!, and several that start events of varying size. I
any case, let us define a time stepDt, divide the time axis
with it, and count the number of extinctions in each interva
Now, let us call the fraction of species that have becom
extinct in each interval thesize Sof the extinction.S will
obviously depend on the time step and on the size of th
system:S5S(Dt,N). If the system is in a critical state this
function will obey some scaling law on the variableN. In
Fig. 6 we have scaled the distribution of the system siz
S(N), P(S,N), obtained for different system sizes according
to the ansatz

P~S,N!5Nb f ~SNn!. ~4!

FIG. 4. The distributionP(t) of time t between two consecu-
tive extinctions.Pmut51025.
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We can observe that the four curves collapse to a single
showing the scaling behavior that is typical of a critical sta

IV. CONCLUSIONS

We have introduced a simple model of coevolution a
extinction in a food chain. This consists of a finite chain
species of predators and prey. Their populations evolve

FIG. 5. Space-time pattern of extinctions as they occur in
chain of 200 species. The lower plot shows a detail of the up
one. Each dot is an extinction event. Crosses, shown by arr
indicate mutations.Pmut51025.
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time following Lotka-Volterra-like equations. Evolution i
mimicked by randomly changing a phenotype. Natural sel
tion is provided by the deterministic behavior of the dynam
cal system, which produces the extinction of any species
cannot cope with its interactions. No relative fitness or
ness landscape had to be invoked. Nevertheless, the pa
of extinctions displayed by this model ecosystem appear
be similar to that proposed for the biosystem on Ear
Namely, the system seems to be in a critical state, in wh
extinctions occur in avalanches. The time between exti
tions, and the lifetime of any species follow distributions th
behave like power laws of time, implying that there is n
typical size for the time that a species remains in the syst
It should be of interest, in a future work, to study the prec
instability that produces the shift of the distribution of th
interactions towards low values. The analytical treatmen
this problem is currently under study.
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FIG. 6. Scaled distribution of the size of the extinctions,P(S),
as a function of the scaled size,S. The four curves correspond t
systems ofN550, 100, 200, and 500 species.
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