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Ecological model of extinctions
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We present numerical results based on a simplified ecological system in evolution, showing features of
extinction similar to that claimed for the biosystem on Earth. In the model each species consists of a population
in interaction with the others, that reproduces and evolves in time. Each species is simultaneously a predator
and a prey in a food chain. Mutations that change the interactions are supposed to occur randomly at a low rate.
Extinctions of populations result naturally from the predator-prey dynamics. The model is not pinned in a
fitness variable, and natural selection arises from the dynaf$t663-651X96)01612-1

PACS numbefs): 87.10+e, 05.40+j, 05.45+b

I. INTRODUCTION species consists of a population interacting with the others,
that reproduces and evolves in time. The system is supposed
The evolution of living organisms is a fascinating phe-to be a food chain, and the interactions to be between preda-
nomenon that has intrigued the imagination of the scientifidor and prey. Mutations that change the interactions are sup-
and nonscientific community. However, the formulation of Posed to occur randomly at a low rate. Extinctions of popu-
mathematical models falls necessarily to drastic simplificalations result from the predator-prey dynamics. This
tions. For example, evolution has often been considered as@&PProach can be thought of as midway between the micro-
“walk” in a rugged landscape. Following this line, Bak and Scopic simulation of “artificial life” by Ray and Adami7],
Sneppen(BS) have proposed a model of biological evolution @nd the coarse-grain description of models like BS's.
[1] that has become quite interesting to the physics commu-
nity due to its simplicity and the insight it provides to the
problem. It has been shown that this model evolves to a
self-organized critica(SOQ state, and is kept there by the  Our model ecosystem consists of a number of species that
means of avalanches of evolutionary activity. This is appealinteract and evolve in time. In the course of its time evolu-
ing for a model of biological evolution, since it has beention the populations grow and shrink following a set of equa-
observed that life on Earth could be in a SOC s{@&g]. tions. Eventually, some of the species become extinct as a
Nevertheless, models based in fithess landscapes, or in a caesult of their interaction with the others. Every now and
cept of fitness different from the biological one, have beenthen we change one of the phenotypic features of one of the
criticized from a biological point of viey3,4]. species, mimicking a random mutation of its genome. This
Since one of the characterizing aspects of life, and permodification produces a perturbation in the dynamics of the
haps the most fundamental one, is that of self-replication, itcosystem, and eventually leads to the extinctions.
is our belief that more realistic models should involve a dy- To be more precise, let us consider a simple example of a
namic population for each species. The starting point ofood web, namely, a one-dimensional food chainspecies
combining population dynamics with evolution is the asso-interact in such a way that the speciefgeds on the species
ciation of the rates of birth and death and the carrying capad—1, and is eaten by the species1. The species 1 is an
ity with phenotypegobservable features that arise from the autotroph: it feeds at a constant rate on an “environment.”
genotype and are, then, subject to mutatid]. The fitness, The speciesN, the top of the chain, is not eaten by any
namely, the expected number of offspring produced by arpecies, but dies giving its mass to the environment. Each
individual, arises from them. In this way, the process of natuspecies has a population that evolves in time and interacts
ral selection is directed by the ecological interactions insteagyith its neighbors in the chain. Furthermore, we consider this
of by a nonbiological notion of relative fitness. evolution in discrete time, which is often more realistic than
Extinction is an essential component of evolution. Thea continuous ong5] and simpler to simulate in a computer.
great majority of species that have ever lived on Earth are As has been said above, each species acts as a predator
now extinct[6]. There exist competing hypotheses that ac-with respect to the one preceding it in the chain, and as a
count extinction as originating from within the biosystem, or prey with respect to the one following it. As a further sim-
from external causes—what has been called “bad genes gjiification, we suppose that there are no intrinsic birth and
bad luck.” In any case, the pattern of extinctions and ofdeath rates, apart from those arising from the predation and
surviving species or groups of species is certainly an interprey contributions. Let us propose the equations governing
esting problem to model, to understand, and eventually tehis behavior[8]. As a predator, the “population’{a con-
check with the fossil record. tinuous density of the species, n', changes from time to
We show in this contribution a simple model of a large time t+ 1 according to
ecological system in evolution. This produces features of ex-
tinction similar to those claimed for the biosystem on Earth. i 1 :
We have chosen to study an ecological model in which each Ani=king ni(1-ndc), (1)

Il. THE MODEL
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wherek; is a rate of growth of the predator population and 18 . . . r
C; is a carrying capacity that accounts for a limitation im-
posed by the environment. Note tha) includes this carry-
ing capacity in a logistic factor to avoid an unbounded
growth of the population. Also observe that the growth is
proportional to the population of prey, without a “satiation”
factor. Similarly, as a prey, the population of the spedcies
will diminish according to

Population

iait+1

Ang=—ginyny "t 2)

The parameterk;, g;, andc; are the phenotypic features of 7x10° 8x10° 9x10° 1x107

our species. In the course of the evolution we allow them to t

change, mimicking random mutations. Moreover, they are

the same for all the individuals of each single population. We £« 1 Evolution of the whole population of a chain of 100

do not model races, traits, polymorphisms, or any phenotypigpecies. probability of mutatioR,= 10~°. Observe the superpo-

variation within a species, and when a mutation occurs it isjtion of small oscillations and the much larger spikes signaling the
assumed that the whole population “moves” instantly to themutations and extinctions.

new state. In this sense, we are modeling the coevolution of

the species and disregarding the evolution of a single one as B . _
well as other important phenomena such as the formation dfom the “phenotypes’k;. The fitness, the degree of adap-

new specieg9]. tation of a species to the ecosystem, arises from the pheno-
Combining the two roles of predator and prey that eacHYPes, the populations, and the dynamics, and it determines
chain, we can write the following set of equations for theintroduced by the random mutatioriand the random re-

evolution of the system: placement of extinct specigeslt provides the material the
. o . o natural selection works on. This, in turn, determines the sur-
Ani=kn{ tnl(1—ni/c)—gini*tnl for i=1,... N, vival of the fittest by simply eliminating from the system

3 those species that cannot cope with the competing environ-
, ment. We believe in this way we avoid a fundamental prob-
lem in the models of evolution as a walk in a fithess land-

where we have introduced two fictitious species, 0 andscape, namely, that the concept of fitness is not the biological
N+1, to take account of the border condition. one[4].

We make two simplifications to the systef®): (1) we
assume that all the carrying capacities are equal, and equal to

nO0=nN+1=1

1; (2) we assume thag;=k;, . In this way we reduce the ' pEgULTS OF THE NUMERICAL SIMULATION
number of parameters that define the phenotypic features of
the ecosystem. We have run our model for several chain sizes, ranging

The dynamics of the system is as follows. At time0,  from 50 to 1000 sites, and for times of about Bfeps. In the
all the populations and interactions are chosen at randomesults reported below we let the system evolve, during a
with uniform distribution in the interval (0,1). Then the transient period, from the initial random state to an organized
populations begin to evolve according to the sysi@nliIn  one.
the course of the evolution driven by E) a population In Fig. 1 we show a typical evolution of the whole popu-
can go to zero. As this can happen asymptotically, we conkation, =;_,"n'. Although each population greatly changes in
sider a species extinct if its population drops below a giverthe course of timéwhich is not shown in the pictufewe
threshold. This is reasonable since actual biological populasbserve that the whole population remains relatively stable.
tions are discrete. In order to keep constant the number oFhis is due to the saturation factor in the predation term of
species we replace an extinct one with a new one, which catine evolution equations. This whole population shows a short
be thought of as a species coming to occupy the niche left bfime oscillatory dynamics governed by the competition be-
the extinct ong10]. The new population, and tHevo) new  tween species through the set of equati¢d)s and a long
interactions with its neighbors in the chain, are also drawn atime evolution characterized by periods of relative stasis and
random from a uniform distribution in the interval (0,1). On periods of fast change. This feature is the effect of mutations
top of this dynamics of predation and extinctions, we intro-and extinction of some species. Without the extinctions and
duce random mutations. In each time step a mutation is pranutations, the dynamics of the system should probably be
duced with probabilityp; the species to mutate is chosen atchaotic. But it is not this feature that we want to analyze
random and the mutation itself consists of the replacement diere. Instead, we shall focus on the pattern of extinctions.
the species with a new one, with a new population and new As the set ofk; represents the phenotypes of the whole
interactions with its predators and prdwll random in  ecosystem, its distributiofR(k), can be used to characterize
(0,1)]. its state. Let us observe what happens in the course of time,

Observe that we do not introduce the fitness of a specieisicluding the transient mentioned above. Initially theare
as a dynamical variable. We do not even need to compute ithosen at random, and thus its distribution is flat in (0,1),
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FIG. 2. DistributionP (k) of the interactions in a chain of 1000
species. Solid line: initial distribution; dashed line: 5000; dotted
line: t=5x1CP. P, =1075.

FIG. 4. The distributionP(7) of time r between two consecu-
tive extinctions.P =105

with mean 0.5. This is shown in Fig. 2 as a full line. As time typical size. In order to characterize this, we have chosen the
passes, and as a result of the dynamics, this distributiotime between two consecutive extinction eventsthe dis-
shifts to a nonuniform one, as shown in Fig. 2 with dashedribution of which is shown in Fig. 4 for several system sizes
lines. The whole distribution shifts towards lower values ofand probabilities of mutation. Observe that they follow a
the interaction, showing a tendency of the system to reducgower law for several decades of large values-dbefore a
the coupling between the species. In the course of the ev@egion where the effects of the finite size of the system start
Iuti'on this distributi_on fluctuates following the pattern of mu- o appear. This is a sign that the system has self-organized
tations and extinctions, but preserves its form. _ _into a critical state. In other words, the extinction events are
Figure 3 shows the above mentioned fluctuations inyjstributed in the time axis in such a way that the time be-
P(k) as the ev_olut|on of the mean valuelgfin the SYStem, - ryeen extinctions does not have a characteristic duration—as
after the transient. It corresponds to the same run as Fig. ?t should have if the distribution were exponential. Extinc-

3insd I:t;xhes 2ar2§;:?ifwgggg\é ij 2?25\?/sn.intse|?::1|atréyd tg thz:'io'étsions appear to come in bursts, or avalanches, of any size.
plays a p P b yDp In Fig. 5 the pattern of extinction events of the system is

of fast change, but without the short time oscillations dis-

played by the population. There are periods of stasis of affen in the course of time. The graphic displays time in the

lengths, to a degree that the unique scale of the figure Canngpsmssa and the index n the f_OOd chain In the ordinate. Each
display. This feature of a lack of a typical length will be dot marks the moment in which a species has become ex-
analyzed immediately. Observe in this figure that the meafinct, €ach cross, a species that suffers a chance mutation. It
value oscillates around 0.24, corresponding to a distributioffan b€ seen that some mutations trigger avalanches of extinc-
like that shown in Fig. 2 with a dotted line. tion, and that these propagate in the “prey” directigBear

The extinction events also display this characteristic patin mind that an extinct species is replaced by a random new
tern of periods of stasis and periods of change, without #ne, most probably with a larger population than its prede-
cessor, and observe that this has a negative impact in the
correspondingprey.) It is also apparent that these avalanches
have a complex shape in space time. It is not easy to measure
their size since, as can be seen in Fig. 5, they overlap. See,
for example, a mutation that isot followed by any ava-
lanche (lower left), another that triggers a very small one
(lower right), and several that start events of varying size. In
any case, let us define a time st&p, divide the time axis
with it, and count the number of extinctions in each interval.
Now, let us call the fraction of species that have become
extinct in each interval theize Sof the extinction.S will
obviously depend on the time step and on the size of the
system:S= S(At,N). If the system is in a critical state this
function will obey some scaling law on the variali¥e In

Y o' Fig. 6 we have scaled the distribution of the system size
t S(N), P(S,N), obtained for different system sizes according
to the ansatz
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FIG. 3. Evolution of the mean value of the interactiols), of
a chain of 100 specie®,, =10 °. The plot corresponds to the

same run as that of Fig. 1. P(S,N)=NPf(SN). (4)
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FIG. 6. Scaled distribution of the size of the extinctioR$S),
as a function of the scaled siz8, The four curves correspond to
100 systems ofN=50, 100, 200, and 500 species.
o time following Lotka-Volterra-like equations. Evolution is
= mimicked by randomly changing a phenotype. Natural selec-
v so | | tion is provided by the deterministic behavior of the dynami-
cal system, which produces the extinction of any species that
cannot cope with its interactions. No relative fithess or fit-
ness landscape had to be invoked. Nevertheless, the pattern
0 —t = — - . . of extinctions displayed by this model ecosystem appears to
52x10°  53x10°  54x10°  55x107  5.6x10°  5.7x10 be similar to that proposed for the biosystem on Earth.

t Namely, the system seems to be in a critical state, in which
extinctions occur in avalanches. The time between extinc-
FIG. 5. Space-time pattern of extinctions as they occur in ations, and the lifetime of any species follow distributions that
chain of 200 species. The lower plot shows a detail of the uppepehave like power laws of time, implying that there is no
one. Each dot is an extinction event. Crosses, shown by arrowsgypical size for the time that a species remains in the system.
indicate mutationsP = 10"°. It should be of interest, in a future work, to study the precise
instability that produces the shift of the distribution of the

We can observe that the four curves collapse to a single ongyteractions towards low values. The analytical treatment of
showing the scaling behavior that is typical of a critical state thjs problem is currently under study.
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